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Abstract—This paper presents a new approach to designing robust controllers for an uncertain
dynamic system using the generalized H∞ norm as a criterion. The controller parameters are
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1. INTRODUCTION

In this paper, we develop a new approach to designing optimal controllers for linear dynamic
systems with unknown mathematical models, unmeasurable disturbances, and uncertain initial
conditions, utilizing a priori information and current data in an online mode. As is known, one of
the most common robust control methods is based on the minimax approach: design a controller
ensuring the best estimate of an optimized functional over the entire set of uncertain parameter
values, determined based on a priori information (for example, see [1, 2]). Despite all its advantages,
this approach has a significant drawback: the guaranteed upper bound of the functional is quite
rough due to the large size of the uncertainty set, and in the absence of accurate a priori information,
the uncertainty set can become so large that a robust controller ceases to exist.

Recently, there has been significant interest in the development of control methods using data
obtained preliminarily during an experiment, often referred to as “data-driven control” [3, 4]. Ini-
tially, these methods were based on the fundamental result of [5], showing that a single trajectory
obtained under the so-called persistent excitation condition can be used for the complete char-
acterization of a linear time-invariant dynamic system without disturbances. According to [6],
the parameterization of a closed-loop control system based on experimental data allows designing
controllers using linear matrix inequalities (LMIs). As established in [7], for designing controllers
from experimental data, it suffices to satisfy the less restrictive condition of data informativity
with respect to the property under study. Subsequently, these methods were extended to systems
with disturbances [8–11] and linear time-varying systems [12]; a stabilizing controller based on
measurements obtained with an error was designed in [13].

The mathematical modeling results presented in the above works demonstrate that even for
relatively small disturbance amplitudes, the guaranteed estimate of the control performance index
turns out to be significantly overvalued. This happens because, as the noise amplitude increases, the
set of systems consistent with the experimental data expands significantly. In most of these works,
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experimental data must also satisfy certain requirements: the matrix composed of state and control
measurements along the system trajectory must be of full row rank. To satisfy this rank condition,
the input signals in the experiments must provide persistent excitation in the system, necessary for
the identifiability of the unknown parameters. Although persistent excitation in the system is not
formally required to ensure data informativity, the uncertainty set can become unbounded even for
small noise amplitudes if the rank condition fails for the experimental data.

These circumstances suggest the idea of designing a controller based on both a priori information
and experimental data. In [14–20], the parameters of state-feedback controllers for linear time-
invariant systems on an infinite horizon, time-varying systems on a finite horizon, as well as some
classes of nonlinear systems, were found with the joint use of a priori information and experimental
data by solving a minimax problem on the set of unknown parameters consistent with the a priori
information and experimental data. Such controllers, obtained by solving LMIs, provide a certainly
smaller value of the guaranteed functional estimate than, first, classical robust controllers and,
second, a controller designed only from experimental data.

During the experimental stage, which precedes the controller design, input signals are chosen
based on the informativity requirements for the output data. However, this stage is not always
feasible due to, e.g., the instability of the system. Furthermore, the parameters of some control
systems depend on the state of the environment, e.g., temperature or pressure. In these cases,
control designed from preliminary stage data may be just partially suitable under other conditions.
Instead, it would be desirable to retune the controller parameters at each step of the real-time
system operation as new current data arrive, based on solving a minimax problem for the set
of models consistent with the information available by that time. Since this set narrows (or, at
worst, does not increase) at each step, the feedback controllers determined in this way will provide
monotonically decreasing or non-increasing guaranteed values of the functional for the unknown
system. The parameter tuning procedure stops when the guaranteed functional value becomes less
than a desired one. This approach is developed below. Note that the informativity conditions are
not required, and the significant question about the necessary number of measurements is eliminated
as well. An illustrative example of active vibration suppression of buildings under seismic loads
demonstrates the effectiveness of the controller design.

2. PROBLEM STATEMENT

Consider an uncertain system of the form

xt+1 = Arealxt +Brealut +Bwwt, x(0) = x0,

zt = Cxt +Dut, t = 0, 1, . . . ,
(2.1)

with the following notation: xt ∈ Rnx is the state vector, ut ∈ Rnu is the control vector (input),
wt ∈ Rnw is a disturbance, and zt ∈ Rnz is the performance (controlled) output. By assumption,
the initial state x0 can be arbitrary, the disturbance {wt, t � 0} has a bounded l2 norm, i.e.,
‖w‖ = (

∑∞
t=0 |wt|2)1/2 < ∞, where | · | stands for the Euclidean norm of an appropriate vector, and

the state is available for control in the feedback loop. The system matrices, collected in the matrix
Ωreal = (Areal Breal), are unknown, but the pair (Areal, Breal) is supposed to be stabilizable; finally,
the matrix Bw (in particular, an identity matrix) is known.

Since the system matrices are unknown, standard optimal control methods turn out to be
inapplicable. In this regard, we will involve a priori information, as is customary in robust control,
and current data, characteristic of adaptive control, for control design. Assume that in the system,
the disturbance wt has a bounded Euclidean norm and the state and control are measured with
some bounded noise:

x̂t = xt + ξt, ût = ut + ηt, (2.2)
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where x̂t and ût are the state and control measurements, respectively, at a time instant t, and

|ξt| � εξ, |ηt| � εη, |wt| � εw ∀ t � 0. (2.3)

Note that the state x̂t and control ût measurements, which will be included in the current data,
contain the specified bounded errors, and the state xt is available for control.

Generally, it is required to design linear state-feedback controllers with tunable parameters based
on a priori information and current data during the real-time operation of the system in order to
reach, after some time, steady-state values that minimize the effect of the initial conditions and
exogenous disturbance on the performance output of the closed-loop time-invariant system.

3. CHARACTERIZATION OF THE NORM IN DUAL SYSTEM TERMS

Before proceeding to the problem solution, let us recall the main results regarding the generalized
H∞ norm from the input wt to output zt of a given closed-loop system with a controller ut = Θxt,
described by the equations

xt+1 = (A+BΘ)xt +Bwwt,

zt = (C +DΘ)xt.
(3.1)

The generalized H∞ norm characterizes the effect of initial conditions and an exogenous disturbance
on the l2 norm of the performance output (i.e., on the transients) and is defined as

‖H‖g∞(Ω,Θ) = sup
{x0, wt∈l2}

‖z‖(
xT0 R

−1x0 + ‖w‖2)1/2 , (3.2)

where Ω = (A B) and R = RT � 0 is a weight matrix measuring the comparative significance of the
uncertainty in the initial conditions and exogenous disturbance for the performance output; S � T
(S � T ) means that the matrix S − T is positive definite (positive semidefinite, respectively). In
this definition, by assumption, the denominator on the right-hand side of (3.2) does not vanish and

H(s) = (C +DΘ)[sI − (A+BΘ)]−1Bw

is the transfer matrix of the closed-loop system relating the disturbance to the performance output.
In particular, the generalized H∞ norm of the system with zero initial conditions coincides with
the standard H∞ norm; in the absence of an exogenous disturbance, it characterizes the maximum
value of the quadratic functional of the performance output for an initial state belonging to the
ellipsoid xTR−1x � 1. The following results on the computation of these norms will be applied
below.

Lemma 3.1 [21]. The generalized H∞ norm of system (3.1) satisfies the condition ‖H‖g∞ < γ
if and only if there exists a positive definite quadratic form V (x) = xTY x, Y ≺ γ2R−1 such that

ΔV (xt) + |zt|2 − γ2|wt|2 < 0, (3.3)

for all nonzero xt and wt, where ΔV (xt) = V (xt+1)− V (xt) denotes the increment of the function
V (x) along the trajectory of the corresponding system.

Lemma 3.2 [17]. The generalized H∞ norm of system (3.1) satisfies the condition ‖H‖g∞ < γ
if and only if there exists a positive definite quadratic form Vd(x) = xTPx, P � R, whose increment
along the trajectory of the dual system

x
(d)
t+1 = (A+BΘ)Tx

(d)
t + (C +DΘ)Tw

(d)
t ,

z
(d)
t = BT

wx
(d)
t

(3.4)
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is such that

ΔVd(x
(d)
t ) + |z(d)t |2 − γ2|w(d)

t |2 < 0 (3.5)

for all nonzero x
(d)
t and w

(d)
t .

Remark 3.1. For the generalized H∞ norm, the matrices of the quadratic forms V (x) = xTY x
and Vd(x

(d)) = x(d)TPx(d) of the primal and dual systems are related by P = γ2Y −1.

Remark 3.2. Under the conditions of each of the lemmas above, the corresponding systems are
asymptotically stable in the absence of disturbances.

4. A PRIORI INFORMATION AND CURRENT DATA

Following conventional robust control methods, let there be a priori information that the real
matrix Ωreal = (Areal Breal) lies strictly inside the domain defined by the inequality

(Ω −Ω∗)(Ω− Ω∗)T � ρ2I, Ω∗ = (A∗ B∗) , (4.1)

where Ω∗ and ρ characterize the nominal system and the size of the uncertainty domain, respectively.
We write inequality (4.1) as

Fa(Ω) := (Ω I)Ψa (Ω I)T � 0, (4.2)

where

Ψa =

⎛⎜⎝ I | �
−−− −−− −−−
−Ω∗ | Ω∗ΩT∗ − ρ2I

⎞⎟⎠ (4.3)

and � replaces the corresponding block of the symmetric matrix. The set Δ(a) := {Ω ∈ Rnx×(nx+nu) :
Fa(Ω) � 0} will be called the set of all matrices consistent with the a priori information. By
assumption, Ωreal ∈ Δ(a).

Due to (2.1) and (2.2), the current data obtained at the time instant t+ 1 satisfy the equation

x̂t+1 = Ωrealϕ̂t + (I Ωreal Bw)

⎛⎜⎝ ξt+1

ζt
wt

⎞⎟⎠ , (4.4)

where

ϕ̂t :=

(
x̂t
ût

)
, ζt =: −

(
ξt
ηt

)
.

The set of all matrices Ω satisfying equation (4.4) for some disturbance and noises under the
constraints (2.3) will be called the set of all matrices consistent with the data x̂t, x̂t+1, and ût, and

denoted by Δ
(p)
t . Clearly, Ωreal ∈ Δ

(p)
t , and the set Δ

(p)
t corresponds to all systems that could have

generated these data. This set is characterized as follows.

Lemma 4.1. All matrices Ω ∈ Δ
(p)
t consistent with the data x̂t, x̂t+1, and ût satisfy the inequality

(Ω I)

(
ϕ̂tϕ̂

T
t − d2I �

−x̂t+1ϕ̂
T
t x̂t+1x̂

T
t+1 − (I +BwB

T
w)d

2

)
(Ω I)T � 0, (4.5)

where d2 = 2ε2ξ + ε2η + ε2w.
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The proof of this and all subsequent results is given in the Appendix. Let some measurements
of the states x̂0, . . . , x̂k and previously chosen controls û0, . . . , ûk−1 of system (2.1) under some
unknown disturbances w0, . . . , wk−1 be obtained by a fixed time instant k. The matrices Ω consis-
tent with all the data x̂0, . . . , x̂k and û0, . . . , ûk−1 obtained by a time instant k � 1 belong to the

set Δ
(p)
[0, k−1] =

⋂k−1
t=0 Δ

(p)
t and are defined by inequalities (4.5) for t = 0, . . . , k − 1. We denote by

Δ0 = Δ(a) and Δk = Δ(a) ⋂Δ
(p)
[0, k−1], k � 1, the set of all matrices Ω consistent with the a priori

information and the data x̂0, . . . , x̂k and û0, . . . , ûk−1 obtained by a time instant k for k � 1. Note
that Δ0 ⊇ Δ1 ⊇ . . . and Ωreal ∈ Δk for any k � 0.

Checking whether the intersection of ellipsoids belongs to a given ellipsoid cannot be represented
as a semidefinite programming problem [22]. Therefore, we replace the set Δk with its outer
ellipsoidal approximation. With this approach, it is possible to find a controller minimizing the
upper bound of the considered norm of the closed-loop system for all models consistent with the
available data.

5. OUTER APPROXIMATION OF THE SET Δk

Summing inequalities (4.2) and (4.5) with some nonnegative multipliers μ � 0 and τ0 � 0, . . . ,
τk−1 � 0, we establish that all matrices Ω consistent with the a priori information and current data
by the time instant k satisfy the inequality

F̂
μ,τk−1

0
(Ω) := (Ω I)Ψ(μ, τk−1

0 )(Ω I)T � 0, k � 1, (5.1)

where

(5.2)

Ψ(μ, τk−1
0 ) =

⎛⎜⎜⎜⎜⎜⎝
μI+

k−1∑
t=0

τt(ϕ̂tϕ̂
T
t − d2I) �

−μΩ∗ −
k−1∑
t=0

τtx̂t+1ϕ̂
T
t μ(Ω∗ΩT∗ −ρ2I)+

k−1∑
t=0

τtx̂t+1x̂
T
t+1−Mk

⎞⎟⎟⎟⎟⎟⎠,

τk−1
0 = (τ0, . . . , τk−1), Mk :=

k−1∑
t=0

τt(I +BwB
T
w)d

2.

We define Δ̂k(μ, τ
k−1
0 ) =

{
Ω ∈ Rnx×(nx+nu) : F̂μ,τk−1

0
(Ω) � 0

}
as the set of all matrices Ω satisfying

inequality (5.1) for fixed μ � 0 and τk−1
0 � 0. Thus, Δk ⊆ Δ̂k(μ, τ

k−1
0 ) for any μ � 0, τk−1

0 � 0

and Ωreal ∈ Δ̂k(μ, τ
k−1
0 ). This set, with certain values of μ � 0 and τk−1

0 � 0, will serve as an outer
approximation of the set Δk.

Let us find boundedness conditions for the set Δ̂k(μ, τ
k−1
0 ).We denote by Ψij(μ, τ

k−1
0 ), i, j = 1, 2,

the corresponding blocks of the matrix (5.2), whose arguments will sometimes be omitted.

Lemma 5.1. If

Ψ11 = μI +
k−1∑
t=0

τt(ϕ̂tϕ̂
T
t − d2I) � 0, (5.3)

then the set Δ̂k(μ, τ
k−1
0 ) is a bounded matrix ellipsoid given by the inequality

(Ω + ΨT
12Ψ

−1
11 )Ψ11(Ω + ΨT

12Ψ
−1
11 )

T � Γk, (5.4)

where Γk = ΨT
12Ψ

−1
11 Ψ12 −Ψ22 � 0.

Remark 5.1. Condition (5.3) means that based on the a priori information, the “energy” of the
measured signal on the entire interval must exceed the total “energy” of the disturbance and mea-
surement noise. If this condition fails, the set Δ̂k(μ, τ

k−1
0 ) will be unbounded; see [19, Lemma 2.1].
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6. ROBUST CONTROLLER BASED ON CURRENT DATA

To design a robust controller with a gain matrix tuned from current data, first it is necessary
to solve the following auxiliary problem: determine the matrix Θ for which the upper bound of
the generalized H∞ norm of the uncertain closed-loop stable system (3.1) will be minimal for
all Ω ∈ Δ̂k(μ, τ

k−1
0 ) with some μ � 0 and τk−1

0 � 0. Generally speaking, a particular Lyapunov
function may exist for each model with the matrix Ω; according to Lemma 3.1, it characterizes
the bound of the norm considered. However, conditions for the existence of a common Lyapunov
function for all Ω ∈ Δ̂k(μ, τ

k−1
0 ) will be obtained below. This introduces some conservatism but

allows deriving necessary and sufficient conditions for the existence of such a function and finding
the corresponding gain matrices. Note that a similar approach was used in robust control when
determining the so-called quadratic stability and performing stabilization under uncertainty (for
example, see [23]).

Definition 6.1. A controller ut = Θxt is called the guaranteed generalized H∞-controller with
a level γ for the uncertain system (3.1) based on a priori information and current data by a
time instant k if there exists a function Vk(x) = xTYkx, 0 ≺ Yk ≺ γ2R−1, and numbers μ � 0 and
τk−1
0 � 0 such that inequality (3.3) holds for all Ω ∈ Δ̂k(μ, τ

k−1
0 ).

According to Lemma 3.1 and Remark 3.2, the closed-loop system with the guaranteed generalized
H∞-controller with a level γ is asymptotically stable and ‖H‖g∞ < γ for all models consistent with
the a priori information and current data by a time instant k.

Theorem 6.1. A controller ut = Θxt is the guaranteed generalized H∞-controller with a level γ
for the uncertain system (3.1) based on current data by a time instant k if and only if Θ = QkP

−1
k

and the following LMI is solvable for Pk = PT
k � R, Qk, μ � 0, and τk−1

0 � 0:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−Pk � � �(
Pk

Qk

)
−Ψ11 � �

0 −Ψ21 −Ψ22−Pk+BwB
T
w �

(C D)

(
Pk

Qk

)
0 0 −γ2I

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
≺ 0, (6.1)

where Ψij, i, j = 1, 2, denote the corresponding blocks of the matrix Ψ(μ, τk−1
0 ) (5.2).

Remark 6.1. Letting μ = 0 in inequality (6.1) eliminates the a priori information from the control
design; with τk−1

0 = 0, the current data will not be used.

Remark 6.2. If the matrix Ψ(μ, τk−1
0 ) consists of experimental data obtained on the interval

[0, k − 1] with the open-loop uncertain system under experimenter’s controls, then Theorem 6.1
remains valid. Note that in this case, with μ = 0 and τ0 = · · · = τk−1 = 1, the corresponding set
Δ̂k(μ, τ

k−1
0 ) coincides with the set of all matrices consistent with the obtained data, as established

in [6, 7, 16]. This means that the approach considered here yields less conservative results than in
the mentioned works.

The minimum value of γ > 0 for which inequality (6.1) is solvable will be called the guaranteed
generalized H∞ norm of the uncertain system based on data by a time instant k. This value will
be denoted by γ∗k whereas the corresponding gain matrix by Θk. Since inequality (6.1) for the
time instant k with τk−1 = 0 turns into inequality (6.1) for the time instant k − 1, the guaranteed
generalized H∞ norms form a nonincreasing sequence as current data are received:

γ∗0 � γ∗1 � · · · . (6.2)
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Let us proceed to the robust control design. As the gain matrix at the initial time instant,
we take the matrix obtained based on only the a priori information, i.e., Θ0 = Q0P

−1
0 , where P0

and Q0 are the solution of inequality (6.1) with τk−1
0 = 0 and γ = γ∗0 . For t = 1, . . . , N − 1, the

matrices Θt are computed as in Theorem 6.1 for the minimum value γ = γ∗t . For t � N, we set
Θt = ΘN−1.

Theorem 6.2. For the uncertain system (2.1) under the controller ut = Θtxt, where Θt, t = 0, . . . ,
N − 1, are computed as in Theorem 6.1 for the minimum value of γ > 0 and Θt = ΘN−1 for t � N,
the following condition holds after the parameter tuning procedure:

∞∑
t=N−1

|zt|2 < γ∗2N−1

⎛⎝xTN−1R
−1xN−1 +

∞∑
t=N−1

|wt|2
⎞⎠ ∀wt. (6.3)

Due to (6.2) and (6.3), in the current data-based control design, it is necessary to trade off
between the quality of the closed-loop system obtained after the tuning procedure and the duration
of the tuning interval (i.e., the costs): the larger N is, the smaller γ∗N−1 will be, and vice versa.

In the case of a sufficiently large uncertainty radius (i.e., rough a priori information), inequal-
ity (6.1) with τk−1

0 = 0 may have no solutions. This means the absence of a common stabilizing
controller for all models from the initial set Δ0. In this case, a random vector is chosen as the ini-
tial control action. If at the next step, still no common controller exists for the new set of models
Δ̂1(μ, τ0) ⊆ Δ0, then a random control action is chosen again, and this process continues until a
time instant t∗ when inequality (6.1) will have a solution. The guaranteed estimate of the control
performance (see Theorem 6.2) remains valid in this case if the initial time is taken as t = t∗.

7. AN ILLUSTRATIVE EXAMPLE

Consider a model of vibrations of a three-story building under seismic load on its foundation.
Figure 1 shows the general scheme of this process. The building stories are represented as material
points, serially connected to each other and to the foundation by linear elastic and dissipative
elements. Vibrations generated by the seismic load (foundation movement) occur in the horizontal
plane. Assume that the building is homogeneous, i.e., the masses of the material points, as well as

u

x3

x2

x1

Fig. 1. The scheme of a building as a multimass elastic system.
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Fig. 2. The evolution of the guaranteed generalized H∞ norms using different information with εξ =
0.01 in the following cases: (a) εw = 0.01 and ε0 = 2, (b) εw = 0.01 and ε0 = 5, (c) εw = 0.1 and
ε0 = 2, and (d) εw = 0.1 and ε0 = 5.

the elasticity and damping coefficients of the elastic and dissipative elements, are the same. Under
this assumption, the dynamics of the structure under consideration (in dimensionless variables and
parameters) are described by the system of differential equations

ẍ1 = −β
(
2ẋ1 − ẋ2

)− (
2x1 − x2

)
+ w,

ẍ2 = −β
(
2ẋ2 − ẋ1 − ẋ3

)− (
2x2 − x1 − x3

)
+ u+ w,

ẍ3 = −β
(
ẋ3 − ẋ2

)− (
x3 − x2

)
+ w,

z = −x1 − βẋ1 + αu

(7.1)

with the following notation: xi, i = 1, 2, 3, are the coordinates of the material points relative to
the moving foundation; u is the damping force generated by the active vibration protection system
installed in the building; w is the acceleration of the foundation, specified up to the sign; z is
the scalar performance output defining the maximum force counteracting the displacement of the
elastic system relative to the base; finally, β is the damping parameter. The vibration isolation
problem is to find a controller minimizing z in some sense.

Let us pass from the continuous-time system to a discrete one with a discretization step of
h = 0.5. We set the following numerical values of the parameters: α = 0.1, β = 0.1, and R = 0.01I.
The center of the matrix sphere Δ(a) consists of the discrete model matrices of system (7.1) with
β = 0.2 and inequality (4.1) holds for ρ = 0.07. The state measurement noise, disturbance, and
initial state were chosen randomly on the spheres of radii εξ, εw, and ε0, respectively; the control
measurements were noiseless, i.e., εη = 0. In total, the uncertain system (7.1) in canonical form
contains 49 unknown parameters.

Figure 2 presents the following evolutions in the case εξ = 0.01: the guaranteed generalized H∞
norm γ∗t of the uncertain system (7.1) under the controller ut = Θtxt based on the a priori informa-
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system under ut = Θtxt.
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Fig. 4. The evolution of the guaranteed generalized H∞ norm for εξ = 0.01 and εw = 0.1 in the case
of no common robust controller based on a priori information: (a) ε0 = 3 and (b) ε0 = 5.

tion and current data (solid curve); the generalized H∞ norm ‖H‖g∞(Ωreal,Θ) for the closed-loop
system consisting of the real system and the time-invariant state-feedback controller with Θ = Θt

(the dotted curve); the guaranteed generalized H∞ norm of the uncertain system (7.1) with the
robust controller ut = Θ0xt obtained based on only the a priori information (the dashed line);
finally, the optimal H∞ norm under the optimal controller for the real closed-loop system (the
dash-and-dot line). Direct comparison of cases (a) and (b) or (c) and (d) in this figure shows that
an increase in the initial state “increases” the block Ψ11 and, accordingly, decreases the matrix
ellipsoid Δ̂k(μ, τ

k−1
0 ), ultimately accelerating the convergence of the generalized H∞ norm to the

minimum value. Comparing cases (a) and (b) with (c) and (d), we observe that a higher value of
the disturbance amplitude slows down the convergence rate of the index, up to a possible stop. The
reason lies in expanding the set of models consistent with the obtained data. Next, Fig. 3 illustrates
typical trajectories of the performance output and two of the six control parameters based on the
a priori information and current data for the real system.

According to Fig. 4, even when the a priori information with ρ = 0.2 is inaccurate and the
guaranteed generalized H∞ norm of the uncertain system (7.1) with the robust controller ut = Θ0xt
obtained based on only the a priori information cannot be determined, the current information turns
out to be sufficient for inequality (6.1) to become solvable, by the eighth step for ε0 = 3 and by the
tenth step for ε0 = 5, and the controller is quickly retuned.
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Fig. 5. The evolution of the guaranteed generalized H∞ norms using both the a priori information
and current data and only current data for εξ = 0.01 and εw = 0.1 : (a) ε0 = 3 and (b) ε0 = 5.

For the sake of comparison, Fig. 5 shows the evolution of the guaranteed generalized H∞ norms
when using both the a priori information and current data (the solid curve) and only the current
data (the dotted curve). Clearly, the a priori information plays a positive role in the control design:
the controller based on only the current data “turns on” merely at steps 14 or 10, whereas the
controller based on the combined information provides an acceptable system performance level
from the first step.

8. CONCLUSIONS

This paper has developed a new control design method for an unknown dynamic system based
on a priori information and noisy current data obtained during the real-time operation of the
system. At each step, the gain matrix is found by solving linear matrix inequalities to minimize
the upper bound of the generalized H∞ norm of the closed-loop system for all models consistent
with the data obtained by this step. As has been proven, the sequence of the guaranteed values of
the corresponding norm obtained in this way is monotonically nonincreasing and, when the tuning
procedure stops, the resulting controller ensures a certain performance level of the closed-loop
system. A distinctive feature of this approach is that the persistent excitation condition is not
required for system identification. Furthermore, unlike adaptive control (where the main issue is to
establish the convergence of the tunable parameters to their true values, and the performance of the
resulting system cannot be assessed), it is possible to track the value of the optimized functional
in real time. The numerical simulation of the active protection of buildings against seismic loads
has demonstrated the effectiveness of the proposed approach.
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APPENDIX

Proof of Lemma 4.1. For matrices Ω consistent with the data x̂t, x̂t+1 and ût, equality (4.4)
holds for some disturbances and noises satisfying the constraints (2.3). It follows that

(x̂t+1 − Ωϕ̂t)(x̂t+1 − Ωϕ̂t)
T

= (I Ω Bw)

⎛⎜⎝ ξt+1

ζt
wt

⎞⎟⎠
⎛⎜⎝ ξt+1

ζt
wt

⎞⎟⎠
T

(I Ω Bw)
T � d2 (I Ω Bw) (I Ω Bw)

T .
(A.1)
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Writing this condition equivalently as

Ω(ϕ̂tϕ̂
T
t − d2I)ΩT − Ωϕ̂tx̂

T
t+1 − x̂t+1ϕ̂

T
t Ω

T + x̂t+1x̂
T
t+1 − (I +BwB

T
w)d

2 � 0,

we obtain (4.5). In turn, if the inequality in (A.1) is valid, equality (4.4) will hold [13] for some
disturbance and noises satisfying the constraints (2.3).

Proof of Lemma 5.1. Writing inequality (5.1) as

ΩΨ11Ω
T +ΩΨ12 +ΨT

12Ω
T +Ψ22 � 0

and completing the square, we bring it to the form (5.4). Since Ωreal ∈ Δ̂k(μ, τ
k−1
0 ), this set is non-

empty and, consequently, Γk � 0. Multiplying (5.4) by aT and a on the left and right, respectively,
and considering Ψ11 > 0, we arrive at

|(Ω + ΨT
12Ψ

−1
11 )

Ta|2 � λ−1
min(Ψ11)λmax(Γk) ∀ a : |a| = 1

⇒ ‖(Ω + ΨT
12Ψ

−1
11 )‖2 � λ−1

min(Ψ11)λmax(Γk),

i.e., the set Δ̂k(μ, τ
k−1
0 ) is bounded.

Proof of Theorem 6.1. Let inequality (6.1) be solvable for some Pk = PT
k � R, Qk, μ � 0, and

τk−1
0 � 0. We replace Qk = ΘPk there and apply the Schur complement lemma to the negative
definite block in the first row and first column to get the equivalent inequality⎛⎜⎜⎝

Υ−Ψ11 � �

−Ψ21 −Ψ22 − Pk +BwB
T
w �

(C D)Υ 0 (C D)Υ(C D)T − γ2I

⎞⎟⎟⎠ ≺ 0,

Υ =

(
I
Θ

)
Pk

(
I
Θ

)T

.

Direct substitution shows that the last inequality is true if and only if, for all nonzero x
(a)
t , w

(a)
t ,

and wΔ
t , the function Vk(x

(a)) = x(a)TPkx
(a) with Pk � R satisfies the inequality

ΔVk(x
(a)
t ) + |z(a)t |2 − γ2|w(a)

t |2 −
(

wΔ
t

x
(a)
t

)T

Ψ(μ, τk−1
0 )

(
wΔ
t

x
(a)
t

)
< 0; (A.2)

here, ΔVk(x
(a)
t ) = Vk(x

(a)
t+1)− Vk(x

(a)
t ) denotes the increment of the function Vk(x

(a)) along the
trajectory of the system

x
(a)
t+1 =

(
I
Θ

)T

wΔ
t +

(
I
Θ

)T

(C D)T w
(a)
t ,

z
(a)
t = BT

wx
(a)
t .

(A.3)

Further, letting wΔ
t = ΩTx

(a)
t in (A.3) yields

x
(d)
t+1 =

(
I
Θ

)T

ΩTx
(d)
t +

(
I
Θ

)T

(C D)Tw
(d)
t ,

z
(d)
t = BT

wx
(d)
t ,

(A.4)
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and these equations coincide with those of the dual system for the original one

xt+1 = Ω

(
I
Θ

)
xt +Bwwt,

zt = (C D)

(
I
Θ

)
xt.

(A.5)

Hence, for all nonzero variables x
(d)
t and w

(d)
t of system (A.4), the function Vk(x

(d)) = x(d)TPkx
(d)

with Pk � R satisfies the inequalities

ΔVk(x
(d)
t )+ |z(d)t |2−γ2|w(d)

t |2−x
(d)T
t

(
ΩT

I

)T

Ψ(μ, τk−1
0 )

(
ΩT

I

)
x
(d)
t < 0. (A.6)

Since we have (Ω I)Ψ(μ, τk−1
0 )(Ω I)T � 0 for all Ω ∈ Δ̂k(μ, τ

k−1
0 ), the function Vk(x

(d)) =
x(d)TPkx

(d) with Pk � R satisfies the inequalities

ΔVk(x
(d)
t ) + |z(d)t |2 − γ2|w(d)

t |2 < 0 (A.7)

for all nonzero variables x
(d)
t and w

(d)
t and all Ω ∈ Δ̂k(μ, τ

k−1
0 ). Due to Lemma 3.2, it follows that

ut = Θxt is the guaranteed generalized H∞-controller with the level γ.

Conversely, let ut = Θxt be the guaranteed generalized H∞-controller with a level γ. By the
definition and Lemma 3.2, for the dual system (A.4), there exist a function Vk(x

(d)) = x(d)TPkx
(d)

with Pk � R and numbers μ̂ � 0 and τ̂ k−1
0 � 0 such that inequality (A.7) holds for all Ω ∈

Δ̂k(μ̂, τ̂
k−1
0 ).We show that along the trajectory of system (A.3), the function Vk(x

(a)) = x(a)TPkx
(a)

with Pk � R satisfies the inequality

ΔVk(x
(a)
t ) + |z(a)t |2 − γ2|w(a)

t |2 < 0 (A.8)

for all nonzero x
(a)
t , w

(a)
t , and wΔ

t such that

(
wΔ
t

x
(a)
t

)T

Ψ(μ̂, τ̂ k−1
0 )

(
wΔ
t

x
(a)
t

)
� 0. (A.9)

Indeed, we choose x
(a)
t = x

(d)
t and w

(a)
t = w

(d)
t and, for each wΔ

t satisfying (A.9), define Ω as the

solution of the linear matrix equation x
(a)T
t Ω = wΔT

t , containing one equation for each column

of the matrix Ω. In this case, from (A.9) it follows that x
(a)T
t (Ω I)Ψ(μ̂, τ̂ k−1

0 )(Ω I)Tx
(a)
t � 0, i.e.,

Ω ∈ Δ̂k(μ̂, τ̂
k−1
0 ). Thus, for such Ω, equations (A.3) coincide with equations (A.4), and inequal-

ity (A.8) coincides with inequality (A.7).

By the losslessness of the S-procedure with one constraint, inequality (A.8) under the con-
straint (A.9) is equivalent to the inequality

ΔVk(x
(a)
t ) + |z(a)t |2 − γ2|w(a)

t |2 − ν

(
wΔ
t

x
(a)
t

)T

Ψ(μ̂, τ̂ k−1
0 )

(
wΔ
t

x
(a)
t

)
< 0

for some ν � 0. Note that by assumption, Ωreal lies strictly inside Δ̂k(μ̂, τ̂
k−1
0 ), so inequality (A.9)

is strict for wΔ
t = ΩT

realx
(a)
t . Since Ψ(μ, τk−1

0 ) linearly depends on μ and τk−1
0 , denoting νμ̂ = μ and

ντ̂ k−1
0 = τk−1

0 , we obtain inequality (A.2), which is equivalent to the LMI (6.1) for Qk = ΘPk.
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Proof of Theorem 6.2. Similar to the proof of Theorem 6.1 for k = N − 1, we obtain that along

the trajectory of system (A.4), the function VN−1(x
(d)
t ) = x

(d)T
t PN−1x

(d)
t with PN−1 > R satisfies

inequality (A.6) for all Ω ∈ Δ̂N−1(μ, τ
N−1
0 ). Consequently, by Lemmas 3.1 and 3.2 and Remark 3.1,

along the trajectory of system (2.1) with ut = ΘN−1xt, the function VN−1(xt) = xTt YN−1xt, where
YN−1 = γ∗2N−1P

−1
N−1, satisfies the inequalities

�VN−1(xt) + |zt|2 − γ∗2N−1|wt|2 < 0

for all Ω ∈ Δ̂N−1(μ, τ
N−1
0 ) and t � N − 1. Summing these inequalities starting from t = N − 1 and

considering the relations limt→∞ VN−1(xt) = 0 and YN−1 < γ∗2N−1R
−1, we finally arrive at (6.3).
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